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MHD Mixed Convection Flow of Casson Nanofluid past a Stretching 
Sheet in the Presence of Viscous Dissipation, Chemical Reaction 
and Heat Source/Sink 

This paper focuses on the effect of MHD mixed convection flow 
of casson nanofluid past a stretching sheet in the presence 
of viscous dissipation, first order chemical reaction and heat 
source/sink. The profiles for the velocity, temperature and 
nanoparticle concentration depends on the parameters Casson 
f luid parameter β, concentration buoyancy parameter N, 
Hartman number M, radiation parameter R, Prandtl number Pr, 
the Schmidt number Sc, Brownian motion Nb, thermophoresis 
parameter Nt, Eckert number Ec, chemical reaction parameter 
γ the heat transfer Biot number γ1 and the mass transfer Biot 
number γ2. The constitute governing partial differential equation 
of flow, heat and mass transfer on considered flow are converted 
into nonlinear ordinary differential equations by employing 
suitable transformations and these transformed equations were 
solved by the Adam’s Moultan fourth order method with shooting 
technique. The various numerical tables are calculated and 
tabulated. Our results have been compared with the results of a 
previous study and found to be in an excellent agreement.
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1. INTRODUCTION 

The study of the boundary layer flow of an 

electrically conducting fluid through a porous 

media has many applications in manufacturing 

and natural process. The study includes the 

applications such as cooling of electronic 

devices by fans, cooling of nuclear reactors 

during emergency shutdown, cooling of an 

infinite metallic plate in a cooling bath, textile and 

paper industries, glass-fiber production, 

manufacture of plastic and rubber sheets, the 

utilization of geothermal energy, the boundary 

layer control in the field of aerodynamics, food 

processing, plasma studies and in the ow of 

biological fluids. 

Magnetohydrodynamics(MHD) is the study of 

the flow of electrically conducting fluids in a 

magnetic field. Many theoretical and 

experimental studies on the conventional and 

electrically conducting fluids indicate that 

magnetic field markedly changes their heat 

transfer and transport characteristics. The study 

of magnetohydrodynamics has many important 

applications, and may be used to deal with 

problems such as cooling of nuclear reactors by 

liquid sodium and induction ow meter, which 

depends on the potential difference in the fluid in 

the direction perpendicular to the motion and to 

the magnetic field. Recently, the application of 

magnetohydrodynamics in the polymer industry 

and metallurgy has attracted the attention of 

many researchers. Several researches 

investigated the MHD flow. 

Dissipation is the process of converting 

mechanical energy of downward-owing water 

into thermal and acoustical energy. Viscous 

dissipation is one of the interest for many 

applications: significant temperature rises are 

observed in polymer processing ows such as 

injection modeling or extrusion at high rates. 

Aerodynamic heating in the thin boundary layer 

around high speed aircraft raises the 

temperature of the skin. The flow due to 

stretching of a flat surface had been first 

investigated and reported by Crane [1]. Layek et 

al. [2] carried out heat and mass transfer 

analysis for boundary layer stagnation point flow 

of an incompressible viscous fluid towards a 

heated porous stretching sheet embedded in a 

porous medium subject to suction/blowing with 

internal heat generation or absorption. Hsiao [3] 

investigated a nanofluid flow with multimedia 

physical features for conjugate mixed 

convection and radiation.The study of non-

Newtonian fluid flowing past stretching sheet 

was provided by Hartnett [4]. Aman and Ishak [5] 

studied the problem of mixed convection 

boundary layer flow adjacent to a stretching 

vertical sheet in an incompressible electrically 

conducting fluid. These are related studies to the 

present investigation about nanofluid flow. 

Turkyilmazoglu [6] studied about 

stretching/shrinking longitudinal fins of 

rectangular profile and heat transfer and related 

parameter effects. Makinde [7] discussed the 

transient free convection interaction with thermal 

radiation of an absorbing emitting fluid along 

moving vertical permeable plate. Recently Liu 

and Andersson [8] investigated heat transfer 

over a bidirectional stretching sheet with variable 

thermal conditions; it is mainly focused on the 

thermal energy conversion related problems at 

the couple boundary layer fluid flow system. 

Mixed convective flows along with thermal 

radiations are commonly encountered in many 

environmental and scientific developments, for 

instance, in aeronautics, fire research, heating 

and cooling of channels, etc. Thus it is of great 

worth to study the radiative convective flow. 

Makinde [9] discussed the transient free 

convection interaction with thermal radiation of 

an absorbing emitting fluid along moving vertical 

permeable plate. Hayat et al. [10] explored the 

MHD radiative mixed convection boundary layer 

stagnation point flow through a porous medium. 

No doubt the MHD flow has gained considerable 

interest due to its fundamental importance in the 

industrial and technological applications such as 

in coating of metals, crystal growth, 

electromagnetic pumps, MHD generators and 

reactor cooling. The Lorentz force interacts with 

the buoyancy force in governing the flow and 
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temperature fields. The effect of Lorentz force is 

known to reduce the velocities. Heat and mass 

transfer characteristics in the 

magnetohydrodynamic (MHD) viscous flow over 

a permeable stretching surface is studied by 

Turkyilmazoglu [11]. Also, Motsa et al. [12] 

obtained the solutions for flow of upper- 

convected Maxwell fluid over porous stretching 

sheet in presence of the magnetic field by using 

successive Taylor series linearization method. 

In several natural processes the fluids 

experience exothermic or endothermic chemical 

reactions. Hence it is important to discuss the 

effects of heat source or sink. Occurrence of 

heat source or sink may change the temperature 

distribution in the fluid which disturbs the particle 

deposition rate in systems such as nuclear 

reactors, electronic chips, and semiconductor 

wafers. Kandasamy et al. [13] discussed the 

combined effect of thermal diffusion and 

diffusion thermo in free convective heat and 

mass transfer flow over a porous stretching 

surface in the presence of hermophoresis 

particle deposition and heat source/sink. 

Recently, Hayat et al. [14] presented the 

radiative flow of Jeffery fluid in a porous medium 

with power law heat flux and heat source. 

The present study deals with the convective 

boundary conditions in the mixed convection 

flow of nanofluid over a stretching sheet. 

Problem formulation is made in presence of 

thermal radiation, heat source/sink, viscous 

dissipation and first order chemical reaction. 

Casson fluid is taken as a base fluid. Boundary 

layer partial differential equations are reduced 

into set of ordinary differential equations by 

using appropriate transformations. Convergent 

solutions of the resulting problems are obtained 

by using series solution.Hayat et at.[15], 

homotopy analysis  ethod Liu et al. [16], Hayat 

et al. [17], Abbasbandy et al. [18], Zheng et al. 

[19], Rashidi et al. [20]. Impacts of all embedding 

parameters are analyzed graphically for the 

temperature, concentration and flow fields. 

Numerical values of skin-friction coefficient, local 

Nusselt and Sherwood numbers for different 

parameters are calculated and analyzed. 

2. MATHEMATICAL MODELING 

Consider two-dimensional steady-state MHD 

mixed convection flow of incompressible Casson 

nanofluid over a linear stretching surface with 

heat source/ sink. Flow is considered in the 

presence of an applied magnetic field, thermal 

radiation and first order chemical reaction. 

Convective heat and mass conditions are taken 

at surface of the sheet.The rheological equation 

of state for an isotropic and incompressible flow 

of a Casson fluid is  

𝜏𝑖𝑗 = {
2 (𝜇Β +

𝑝𝑦

√2𝜋
) 𝑒𝑖𝑗, 𝜋 > 𝜋𝑐

2 (𝜇Β +
𝑝𝑦

√2𝜋𝑐
) 𝑒𝑖𝑗, 𝜋𝑐 > 𝜋

           

(1) 

In the above expression where 𝜇Β is the plastic 

dynamic viscosity of the non- Newtonian fluid, 𝑝𝑦 

is the yield stress of fluid, 𝜋 is the product of the 

component of deformation rate and itself, 

namely, 𝜋 = 𝑒𝑖𝑗𝑒𝑖𝑗 ,  𝑒𝑖𝑗 is the (𝑖, 𝑗) component of 

the deformation rate, and 𝜋𝑐 is a critical value of 

𝜋 based on non-Newtonian model. The velocity 

field is taken as 

𝑉 = [𝑢(𝑥, 𝑦), 𝑣(𝑥, 𝑦), 0]           

(2) 

where 𝑢 and 𝑣 denote the velocity components 

in the 𝑥 and 𝑦 directions. The governing 

equations of mass, momentum, thermal energy, 

and concentration of steady, laminar boundary 

layer flow of a Casson nanofluid past a 

stretching sheet along with the boundary layer 

approximation are given by 

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0            (3) 

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= −

𝜎∗𝐵0
2(𝑥)

𝜌
𝑢 + 𝜈 (1 +

1

𝛽
)

𝜕2𝑢

𝜕𝑦2
+

𝑔𝛽𝑇(𝑇 − 𝑇∞) + 𝑔𝛽𝐶(𝐶 − 𝐶∞)         (4) 

𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
=

𝜇

𝜌𝑐𝑝
(1 +

1

𝛾
) (

𝜕𝑢

𝜕𝑦
)
2

+ 𝜌
𝜕2𝑇

𝜕𝑦2 −

16𝜎𝑠𝑇∞
3

3𝑘𝑒𝜌𝑐𝑝

𝜕2𝑇

𝜕𝑦2
+ 𝜏 [𝐷𝐵

𝜕𝐶

𝜕𝑦

𝜕𝑇

𝜕𝑦
+

𝐷𝑇

𝑇∞
(
𝜕𝑇

𝜕𝑦
)
2

] −
𝑄

𝜌𝑐𝑝
(𝑇 − 𝑇∞)       

(5) 
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𝑢
𝜕𝐶

𝜕𝑥
+ 𝑣

𝜕𝐶

𝜕𝑦
= 𝐷𝐵

𝜕2𝐶

𝜕𝑦2 +
𝐷𝑇

𝑇∞

𝜕2𝐶

𝜕𝑦2 − 𝑘1(𝐶 − 𝐶∞)      (6) 

where 𝛽 = 𝜇𝐵√2𝜋𝑐 𝑝𝑦⁄  is the Casson fluid 

parameter, 𝛽𝑇 is the thermal expansion 

coefficient, 𝛽𝐶 is the concentration expansion 

coefficient, 𝜈 = (𝜇𝐵 𝜌⁄ ) is kinematic coefficient of 

viscosity, 𝜇𝐵the dynamic viscosity, 𝜎∗ is 

electrical conductivity, 𝜌 is density, 𝑇 is 

temperature,𝐶 the concentration field, 𝐵0 is 

magnitude of applied magnetic field, g the 

gravitational acceleration, 𝜏 =
(𝜌𝑐)𝑝

(𝜌𝑐)𝑓
 is the ratio of 

effective heat capacity of the nanoparticle 

material and heat capacity of the fluid, 𝐷𝐵 is 

Brownian diffusion coefficient, 𝐷𝑇 is 

thermophoretic diffusion coefficient, 𝑐 is specific 

heat at constant pressure 𝜎𝑠 the Stefan-

Boltzmann constant, 𝑄 the uniform volumetric 

heat generation/absorption. The subscripts 𝑝 

and 𝑓 stand for the thermophysical properties of 

nanoparticles and the base fluid, respectively. 

The boundary conditions can be expressed as 

follow: 

𝑢 = 𝑈𝑤(𝑥) ⇒ 𝑢 = 𝑐𝑥, 𝑣 = 0,   

−𝑘
𝜕𝑇

𝜕𝑦
= ℎ(𝑇𝑓 − 𝑇),−𝐷

𝜕𝐶

𝜕𝑦
= ℎ∗(𝐶𝑓 − 𝐶)  at 𝑦 = 0 

𝑢 = 0, 𝑣 = 0, 𝑇 → 𝑇∞, 𝐶 → 𝐶∞  as 𝑦 = ∞        (7) 

where subscript 𝑤 corresponds to the wall 

condition, ℎ the heat transfer coefficient, ℎ∗ the 

concentration transfer coefficient, 𝑇𝑓 the hot 

fluid temperature and 𝐶𝑓 the hot fluid 

concentration. 

The continuity equation (1)can be satisfied by 

introducing a stream function 𝜓 such that 

𝑢 =
𝜕𝜓

𝜕𝑦
,        𝑣 = −

𝜕𝜓

𝜕𝑥
          (8) 

The momentum and energy equations can be 

transformed into the corresponding nonlinear 

ordinary differential equations by the following 

transformations: 

𝜂 = 𝑦√
𝑎

𝜈
, 𝜓 = √𝑎𝜈𝑥𝑓(𝜂),  

𝜃(𝜂) =
𝑇−𝑇∞

𝑇𝑓−𝑇∞
,  𝜙(𝜂) =

𝐶−𝐶∞

𝐶𝑤−𝐶∞
.        (9)  

where 𝜓 denotes stream function and 𝑓(𝜂) is a 

dimensionless velocity function, 𝜃 is 

dimensionless temperature function and 𝜙 is 

dimensionless concentration function and 𝜂 is 

similarity variable. After using similarity 

transformations, the governing equations (4) −

(6) are reduced to the ordinary differential 

equations as follows:  

(1 +
1

𝛽
) 𝑓′′′ + 𝑓𝑓′′ − (𝑓′)2 − 𝑀𝑓′ + 𝜆(𝜃 + 𝑁𝜙) =

0 (10) 

(1 +
4

3
𝑅) 𝜃′′ + 𝑃𝑟𝑓𝜃′ + 𝑃𝑟𝑁𝑏𝜃′𝜙′ + 𝑃𝑟𝑁𝑡(𝜃′)2 +

𝑃𝑟 (1 +
1

𝛾
) 𝐸𝑐 (𝑓′′)2 + 𝑃𝑟𝛽1𝜃 = 0                  

(11) 

𝜙′′ + 𝑆𝑒𝑓𝜙′ +
𝑁𝑡

𝑁𝑏
𝜃′′ − 𝑆𝑐𝛾𝜙 = 0         

(12) 

The transformed boundary conditions 

for𝑓(𝜂), 𝜃(𝜂) and 𝜙(𝜂) are 

𝑓(0) = 0,  𝑓′(0) = 1,   𝜃′(0) = −𝛾1[1 −

𝜃(0)], 𝜙′ = −𝛾2[1 − 𝜙(0)], at 𝜂 = 0, 

𝑓′(∞) → 0, 𝜃(∞) → 0, 𝜙(∞) → 0 as 𝜂 → ∞     

(13) 

Here prime denotes differentiation with respect 

to 𝜂, 𝜆 is the mixed convection parameter, 

𝐺𝑟𝑥  the local Grashof number, 𝑁 the 

concentration buoyancy parameter, 𝑃𝑟 is Prandtl 

number, 𝑆𝑒 is Schmidt number, 𝑀 is the 

Hartman number,𝑅 is the radiation parameter, 

𝑁𝑏 is Browian motation parameter,𝑁𝑡 is 

thermophoresis parameter, 𝛽1 the heat 

source/sink parameter, 𝛾1 the heat transfer Biot 

number, 𝛾2 the mass transfer Biot number,𝐸𝑐 is 

the Eckert number and 𝛾 is the chemical reaction 

parameter. These can be defined in the forms 

λ =
Grx

Rex
2, Sc =

ν

D
, Nt =

ρpDB(Cw−C∞)

ρfα
, 

Grx =
gβT(Tf−T∞)x3

ν2 , 

M =
σ∗B0

2(x)

ρ
, β1 =

Q

ρcp
, 

N =
βC(Cw−C∞)

βT(Tw−T∞)
, 

R =

(
4σ∗T∞

3

kek
), 

γ1 =
h

k
√

ν

a
, 
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Pr =
ν

α
, Nb =

ρpDB(Cw−C∞)

ρfα
, 

γ2 =
h∗

D
 √

ν

a
, 

Ec

=
u2

cp(Tf − T∞)
, 

γ =
k1

c
.  

The physical quantities of importance in 

stretching sheet transport are the skin friction 

coefficient 𝐶𝑓, the reduced Nusselt number 𝑁𝑢𝑥, 

and reduced Sherwood number 𝑆ℎ𝑥, which are 

calculated respectively by the following 

equations: 

𝐶𝑓 =
𝜏𝑤

𝜌𝑢𝑤
2 , 𝑁𝑢𝑥 =

𝑥𝑞𝑤

𝑘((𝑇𝑤−𝑇∞)
, 𝑆ℎ𝑥 =

𝑥ℎ𝑚

𝐷𝐵((𝐶𝑤−𝐶∞)
     

(14) 

where 𝜏𝑤 is the shear stress along the stretching 

surface, 𝑞𝑤 is the heat flux from the   stretching 

surface and ℎ𝑤 is the wall mass flux, which are 

given by 

𝜏𝑤 = 𝜇 (
𝜕𝑢

𝜕𝑦
)
𝑦=0

, 𝑞𝑤 = −𝑘 (
𝜕𝑇

𝜕𝑦
)
𝑦=0

, 

ℎ𝑚 = −𝐷𝐵 (
𝜕𝐶

𝜕𝑦
)
𝑦=0

           (15) 

1

2
𝐶𝑓√𝑅𝑒𝑥 = −(1 +

1

𝛽
) 𝑓′′(0),   

𝑁𝑢𝑥

√𝑅𝑒𝑥
= −𝜃′(0),   

𝑆ℎ𝑥

√𝑅𝑒𝑥
= −𝜙′(0)                         

(16) 

where 𝑅𝑒𝑥 = 𝑎𝑥2 is the local Reynolds number. 

3. NUMERICAL SOLUTION 

Higher order nonlinear differential equations (10) 

– (12) are converted into a system of first order 

differential equations and further transformed 

into initial value problem by labeling the 

variables as 

 

(

 
 
 
 
 

y1
′

y2
′

y3
′

y4
′

y5
′

y6
′

y7
′ )

 
 
 
 
 

=

(

 
 
 
 
 
 
 

y2

y3

y2
2−y1y3−λ(y4+Ny6)+My2

(1+
1

β
)

y5

−Pr(y1y5+Nby7y5+Nty5
2+β1y4)

(1+
4R

3
)

y7

−Scy7y1 −
Nb

Nt
y5

1 + scγy6 )

 
 
 
 
 
 
 

              (17) 

Associated boundary conditions in Eq. (13) can 

be written as 

(

 
 
 
 
 

y1(0)

y2(0)

y3(0)

y4(0)

y5(0)

y6(0)

y7(0))

 
 
 
 
 

=

(

 
 
 
 

0
1
p1

p2

γ1(p2 − 1)
p3

γ2(p3 − 1))

 
 
 
 

                     (18) 

Here  𝑝1 = 𝑓′′(0), 𝑝2 = 𝜃(0)𝑎𝑛𝑑 𝑝3(0) = 𝜙(0). 

𝑝1, 𝑝2, 𝑝3 are to be found satisfying end 

conditions 𝑦2 → 0, 𝑦4 → 0, 𝑦6 → 0 as  𝜂 → ∞. 

Adams Moultan fourth order method (with the 

corresponding predictor) is used to solve the 

initial value problem. Assumed values of 𝑝1, 𝑝2 

and 𝑝3 are corrected using Newton method. 

Derivatives of 𝑓′′(∞, 𝑝1, 𝑝2, 𝑝3), 𝜃(∞, 𝑝1, 𝑝2, 𝑝3) 

and  𝜙(∞, 𝑝1, 𝑝2, 𝑝3) with respect to any 

parameter 𝑝(𝑝1, 𝑝2 𝑜𝑟 𝑝3) are found by solving 

the equation which are obtained by 

differentiating system (17). 

𝑌𝑖 =
𝜕𝑦𝑖

𝜕𝑝
 for all 𝑖 = 1,2,3,4,5,6,7 

These equations are 

𝑌1
′ = 𝑌(2), 𝑌2

′ = 𝑌(3), 

𝑌3
′ = 2𝑦(2)𝑌(2) − 𝑦(1)𝑌(3) − 𝑌(1)𝑦(3) −

𝜆(𝑦(4) + 𝑁𝑦(6)) + 𝑀𝑦(2), 

𝑌4
′ = 𝑌(5), 

𝑌5
′ =

−𝑃𝑟

(1 +
4
3)

[𝑦(1)𝑌(5) − 𝑌(1)𝑦(5)

+ 𝑁𝑏(𝑦(7)𝑌(5) − 𝑌(7)𝑦(5)

+ 2𝑁𝑡𝑦(5)𝑌(5) + 𝛽1𝑦(4)], 

𝑌6
′ = 𝑌(7), 

𝑌7
′ = −𝑆𝑐(𝑌(7)𝑦(1) + 𝑌(1)𝑦(7)) −

𝑁𝑡

𝑁𝑏
𝑌5

′

+ 𝑆𝑐𝛾𝑦(6) 

This system is solved with three different sets of 

initial conditions 𝑦𝑖(0) = 0 for all 𝑖 = 1,2,3,4,5,6,7 

expect  

(i) 𝑦3(0) = 1, 

(ii) 𝑦4(0) = 1, 𝑦5(0) = 𝛾1, 

(iii) 𝑦6(0) = 1, 𝑦7(0) = 𝛾2. 

Newton’s method is  
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(

𝑝1

𝑝2

𝑝3

)

𝑁𝑒𝑤

= (

𝑝1

𝑝2

𝑝3

)

𝑂𝑙𝑑

−

[
 
 
 
 
 
 
𝜕𝑦3

𝜕𝑝1

𝜕𝑦3

𝜕𝑝2

𝜕𝑦3

𝜕𝑝3

𝜕𝑦4

𝜕𝑝1

𝜕𝑦4

𝜕𝑝2

𝜕𝑦4

𝜕𝑝3

𝜕𝑦6

𝜕𝑝1

𝜕𝑦6

𝜕𝑝2

𝜕𝑦6

𝜕𝑝3]
 
 
 
 
 
 
−1

𝜂=∞

[

𝑦3

𝑦4

𝑦6

]

𝜂=∞

 

         (19) 

It may be noticed that the choice of initial guess 

of 𝑝1, 𝑝2, 𝑝3 is very crucial. Once we obtain 

solution for a particular set of physical 

parameters, a single parameter changed slightly 

to achieve convergence of newton’s method. 

The choice of 𝜂𝑚𝑎𝑥 = 8 was more than enough 

for end condition. The convergence criteria is 

chosen to be successive value agree up to 3 

significant digits.  

4. RESULTS AND DISCUSSION 

In the present study, the effects MHD Mixed 

convection flow of Casson Nanofluid past a 

stretching sheet in the presence of viscous 

dissipation, chemical reaction and heat 

source/sink were analyzed. In order to analyze 

the results, numerical calculations are carried 

out for various values of Casson fluid parameter 

𝛽, concentration buoyancy parameter 𝑁, the 

mixed convection parameter 𝜆, Brownian motion 

𝑁𝑏,thermophoresis parameter 𝑁𝑡, Eckert 

number 𝐸𝑐, chemical reaction parameter 𝛾 the 

heat transfer Biot number 𝛾1 and  the mass 

transfer Biot number 𝛾2. For validation of the 

present method, the results are compared with 

previously reported results and displayed in 

Tables 1, 2, and 3. Results are presented in 

several tables so that variation with respect to a 

single parameter can be studied.  

Table 1 represents the variation of both local 

nusselt number −𝜃(0) and Sherwood number 

−𝜙(0) for different values of the parameters 

𝛽,𝑁𝑡 𝑎𝑛𝑑 𝑁𝑏. As the values of Casson fluid 

parameter 𝛽 and thermophoresis parameter 𝑁𝑡 

increase, both the values of −𝜃(0)  and −𝜙(0) 

decrease. 

Tables 2 prepared to explore the impacts of 

mixed convection parameter 𝜆, concentration 

buoyancy parameter 𝑁, heat transfer Biot 

number 𝛾1 and mass transfer Biot number 𝛾2 on 

local Nusselt and Sherwood numbers. In case of 

assisting flow ( 𝜆 > 0) and with an enhancement 

in 𝑁, 𝛾1,𝛾2 the local Nusselt and Sherwood 

numbers enhance. Table 3 describes the 

comparison of skin-friction coefficient for 

different values of β, Nt, Nb, γ1, γ2, λ, N 

respectively. 

 

TABLE 1 Comparison of Numerical values of Local Nusselt Number – 𝜃′(0) and Sherwood Number 

–𝜙′(0) for different values of parameters 𝛽, 𝑁𝑡, 𝑁𝑏 When 𝛽1 = 𝑅 = 𝑀 = 𝛾 = 0.0, 𝜆 = 𝑁 = 0.3, 𝛾1 =
𝛾2 = 0.2, 𝑃𝑟 = 1.0, 𝑆𝑐 = 0.7. 
 

𝜷 𝑵𝒕 𝑵𝒃 

–𝜽′(𝟎) –𝝓′(𝟎) 

T.Hayat et al.[01] Present Result T.Hayat et al.[01] Present Result 

0.5 0.2 0.2 0.15271 0.1526939 0.12054 0.1205407 

0.7   0.15204 0.1519901 0.11910 0.1188185 

0.9   0.15150 0.1514782 0.11758 0.1175741 

0.5 0.4  0.15195 0.1518633 0.096142 0.0956810 

 0.6  0.15106 0.1510139 0.071520 0.0717563 

  0.4 0.15186 0.1517981 0.13368 0.1336129 

  0.6 0.15100 0.1509065 0.13815 0.1379848 
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TABLE 2 Comparison of Numerical Values of Local Nusselt Number – 𝜃′(0) And Sherwood Number 

–𝜙′(0) for Different values of Parameters 𝜆, 𝑁, 𝛾1, 𝛾2 when 𝛽1 = 𝑅 = 𝑀 = 𝛾 = 𝐸𝑐 = 0.0, 𝑁𝑡 = 𝑁𝑏 =
0.2, 𝛽 = 0.5, 𝑃𝑟 = 1.0, 𝑆𝑐 = 0.7. 

𝝀 𝑵 𝜸𝟏 𝜸𝟐 
–𝜽′(𝟎) –𝝓′(𝟎) 

T.Hayat et al.[01] Present Result T.Hayat et al.[01] Present Result 

-0.5 0.3 0.2 0.2 1.5201 0.1411910 0.11969 0.0840725 

0.0    0.15248 0.1524246 0.12014 0.1199470 

0.3    0.15271 0.1526939 0.12054 0.1205407 

0.6    0.15302 0.1529436 0.12144 0.1210837 

0.3 0.0   0.15261 0.1525648 0.12032 0.1202398 

 0.3   0.15271 0.1526939 0.12054 0.1205407 

 0.6   0.15302 0.1528177 0.12078 0.1208268 

0.3 0.3 0.2  0.15271 0.1526939 0.12054 0.1205407 

  0.4  0.24602 0.2458604 0.10535 0.1053597 

  0.6  0.30822 0.3080297 0.095273 0.0954224 

0.3 0.3 0.2 0.1 0.15304 0.1529687 0.069638 0.0694951 

   0.3 0.15255 0.1524822 0.15995 0.0694951 

   0.5 0.15224 0.1521774 0.21584 0.2156148 

 

TABLE 3 Comparison Numerical values of skin-friction coefficient −(1 +
1

𝛽
) 𝑓′′(0) for different 

values of parameters β,Nt, Nb, λ, N, γ1, γ2 when β1 = R = M = Ec = γ = 0.0, Pr = 1.0, Sc = 0.7. 

𝜷 𝑵𝒕 𝑵𝒃 𝝀 𝑵 𝛄𝟏 𝛄𝟐 
−(𝟏 +

𝟏

𝛃
) 𝐟′′(𝟎) 

T.Hayat et al.[01] Present Result 

0.5 0.2 0.2 0.3 0.3 0.2 0.2 1.6532 1.6550370 

0.7       1.4797 1.4804710 

0.9       1.3741 1.3746860 

0.5 0.4      1.6368 1.6384980 

 0.6      1.6204 1.6222260 

0.5 0.2 0.4     1.6598 1.6615690 

  0.6     1.6613 1.6629120 

0.5 0.2 0.2 -0.5 0.3 0.2 0.2 1.8689 1.8719940 

   0.0    1.7321 1.7340090 

   0.3    1.6532 1.6550370 

   0.6    1.5770 1.5784280 

   0.3 0.0   1.6863 1.6881400 

    0.3   1.6532 1.6550370 

    0.6   1.6207 1.6225270 

0.5 0.2 0.2 0.3 0.3 0.2  1.6532 1.6550370 

     0.4  1.6152 1.6169630 

     0.6  1.5893 1.5912010 

0.5 0.2 0.2 0.3 0.3 0.2 0.1 1.6598 1.6614870 

      0.3 1.6484 1.6501050 

      0.5 1.6413 1.6430600 

 

TABLE 4 Computation showing the values of skin-friction coefficient  −(1 +
1

𝛽
) 𝑓′′(0) , of Local 

Nusselt  Number – 𝜃′(0) and Sherwood Number –𝜙′(0) for different values of parameters 𝜆, 𝐸𝑐 

when  𝛽1 = 𝑅 = 𝑀 = 𝛾 = 0.0, 𝑁𝑡 = 𝑁𝑏 = 𝛾1 = 𝛾2 = 0.2, 𝛽 = 𝑁 = 0.5, 𝑃𝑟 = 1.0, 𝑆𝑐 = 0.7. 

𝜆 

𝐸𝑐 = 0 𝐸𝑐 = 0.2 𝐸𝑐 = 0.5 

−(1 +
1

𝛽
)𝑓′′(0) −𝜃′(0) −𝜙′(0) −(1 +

1

𝛽
)𝑓′′(0) −𝜃′(0) −𝜙′(0) −(1 +

1

𝛽
)𝑓′′(0) −𝜃′(0) −𝜙′(0) 

-0.5 1.9134680 0.1517340 0.1183575 2.0048810 0 .1145943 0 .1333708 2.2170020 0.0369943 0.1622329 

-0.3 1.8396380 0.1520290 0.1190451 1.8874780 0 .1184620 0 .1331941 1.9710430 0.0611734 0.1570865 

-0.1 1.7686150 0.1522982 0.1196611 1.7828940 0 .1215222 0 .1330002 1.8052610 0.0736003 0.1537356 

0 1.7340080 0.5780027 0.4002650 1.7340090 0 .1228466 0 .1329055 1.7340090 0.0783029 0.1523838 

0.1 1.6999460 0.1525462 0.1202202 1.6869410 0 .1240642 0 .1328142 1.6678620 0.0823799 0.1511822 

0.3 1.6332990 0.1527770 0.1207329 1.5973510 0 .1262383 0 .1326443 1.5469270 0.0891988 0.1491229 

0.5 1.5684230 0.1529929 0.1212069 1.5127120 0.1281345 0.1324927 1.4371370 0.0947593 0.1474091 
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TABLE 5 Computation showing the values of skin-friction coefficient  −(1 +
1

𝛽
) 𝑓′′(0) , of Local 

Nusselt  Number – 𝜃′(0) and Sherwood Number –𝜙′(0) for different values of parameters 𝛽, 𝐸𝑐 

when  𝛽1 = 𝑅 = 𝑀 = 𝛾 = 0.0, 𝜆 = 0.3, 𝑁𝑡 = 𝑁𝑏 = 𝛾1 = 𝛾2 = 0.2, 𝑁 = 0.5, 𝑃𝑟 = 1.0, 𝑆𝑐 = 0.7. 

𝛽 

𝐸𝑐 = 0 𝐸𝑐 = 0.2 𝐸𝑐 = 0.5 

−(1 +
1

𝛽
)𝑓′′(0) −𝜃′(0) −𝜙′(0) −(1 +

1

𝛽
)𝑓′′(0) −𝜃′(0) −𝜙′(0) −(1 +

1

𝛽
)𝑓′′(0) −𝜃′(0) −𝜙′(0) 

0.5 1.6332990 0.1527770 0.1207329 1.5973510 0.1262383 0.1326443 1.5469270 0.0891988 0.1491229 

0.7 1.4588750 0.1521000 0.1190783 1.4274150 0.1274774 0.1302837 1.3835310 0.0931757 0.1457792 

0.9 1.3532000 0.1516110 0.1178925 1.3244610 0.1282154 0.1286471 1.2845170 0.0956635 0.1435128 

 

TABLE 6 Computation showing the values of skin-friction coefficient  −(1 +
1

𝛽
) 𝑓′′(0) , of Local 

Nusselt  Number – 𝜃′(0) and Sherwood Number –𝜙′(0) for different values of parameters 𝑁𝑡, 𝐸𝑐 
when  𝛽1 = 𝑅 = 𝑀 = 𝛾 = 0.0, 𝜆 = 0.3, 𝑁𝑏 = 𝛾1 = 𝛾2 = 0.2, 𝛽 = 𝑁 = 0.5, 𝑃𝑟 = 1.0, 𝑆𝑐 = 0.7. 

𝑁𝑡 

𝐸𝑐 = 0 𝐸𝑐 = 0.2 𝐸𝑐 = 0.5 

−(1 +
1

𝛽
)𝑓′′(0) −𝜃′(0) −𝜙′(0) −(1 +

1

𝛽
)𝑓′′(0) −𝜃′(0) −𝜙′(0) −(1 +

1

𝛽
)𝑓′′(0) −𝜃′(0) −𝜙′(0) 

0.2 1.6332990 0.1527770 0.1207329 1.5973510 0.1262383 0.1326443 1.5469270 0.0891988 0.1491229 

0.4 1.6070970 0.1519914 0.0961043 1.5741970 0.1258140 0.1193705 1.5283700 0.0893571 0.1515359 

0.6 1.5815300 0.1511874 0.0724873 1.5517590 0.1253514 0.1067416 1.5106090 0.0894192 0.1540931 

 

TABLE 7 Computation showing the values of skin-friction coefficient  −(1 +
1

𝛽
) 𝑓′′(0) , of Local 

Nusselt  Number – 𝜃′(0) and Sherwood Number –𝜙′(0) for different values of parameters 𝑁𝑏, 𝐸𝑐 

when  𝛽1 = 𝑅 = 𝑀 = 𝛾 = 0.0, 𝜆 = 0.3, 𝑁𝑡 = 𝛾1 = 𝛾2 = 0.2, 𝛽 = 𝑁 = 0.5, 𝑃𝑟 = 1.0, 𝑆𝑐 = 0.7. 

Nb 

Ec = 0 Ec = 0.2 Ec = 0.5 

−(1 +
1

β
) f ′′(0) −θ′(0) −ϕ′(0) −(1 +

1

β
) f ′′(0) −θ′(0) −ϕ′(0) −(1 +

1

β
) f ′′(0) −θ′(0) −ϕ′(0) 

0.2 1.6332990 0.1527770 0 .1207329 1.5973510 0 .1262383 0 .1326443 1.5469270 0.0891988 0 .1491229 

0.4 1.6448500 0 .1518615 0 .1337213 1.6066600 0 .1247386 0 .1398785 1.5529160 0.0868544 0 .1483897 

0.6 1.6478890 0 .1509639 .1380702 1.6086540 0 .1234832 0 .1422799 1.5534280 0.0851180 0 .1480930 

 

TABLE 8 Computation showing the values of skin-friction coefficient  −(1 +
1

𝛽
) 𝑓′′(0) , of Local 

Nusselt  Number – 𝜃′(0) and Sherwood Number –𝜙′(0) for different values of parameters 𝛾1, 𝐸𝑐 
when  𝛽1 = 𝑅 = 𝑀 = 𝛾 = 0.0, 𝜆 = 0.3, 𝑁𝑡 = 𝑁𝑏 = 𝛾2 = 0.2, 𝛽 = 𝑁 = 0.5, 𝑃𝑟 = 1.0, 𝑆𝑐 = 0.7. 

𝛾1 

𝐸𝑐 = 0 𝐸𝑐 = 0.2 𝐸𝑐 = 0.5 

−(1 +
1

𝛽
)𝑓′′(0) −𝜃′(0) −𝜙′(0) −(1 +

1

𝛽
)𝑓′′(0) −𝜃′(0) −𝜙′(0) −(1 +

1

𝛽
)𝑓′′(0) −𝜃′(0) −𝜙′(0) 

0.2 1.6332990 0.1527770 0.1207329 1.5973510 0.1262383 0.1326443 1.5469270 0.0891988 0.1491229 

0.4 1.5894870 0.2461417 0.1056592 1.5618180 0.2043547 0.1198786 1.5224360 0.1453078 0.1398094 

0.6 1.5599890 0.3085376 0.0957952 1.5376830 0.2570481 0.1114108 1.5056090 0.1836398 0.1335182 

 

TABLE 9 Computation showing the values of skin-friction coefficient  −(1 +
1

𝛽
) 𝑓′′(0) , of Local 

Nusselt  Number – 𝜃′(0) and Sherwood Number –𝜙′(0) for different values of parameters 𝛾2, 𝐸𝑐 
when  𝛽1 = 𝑅 = 𝑀 = 𝛾 = 0.0, 𝜆 = 0.3, 𝑁𝑡 = 𝑁𝑏 = 𝛾1 = 0.2, 𝛽 = 𝑁 = 0.5, 𝑃𝑟 = 1.0, 𝑆𝑐 = 0.7. 

𝛾2 

𝐸𝑐 = 0 𝐸𝑐 = 0.2 𝐸𝑐 = 0.5 

−(1 +
1

𝛽
)𝑓′′(0) −𝜃′(0) −𝜙′(0) −(1 +

1

𝛽
)𝑓′′(0) −𝜃′(0) −𝜙′(0) −(1 +

1

𝛽
)𝑓′′(0) −𝜃′(0) −𝜙′(0) 

0.1 1.6436920 0 .1530387 0 .0695723 1.6085930 0.1264281 0.0764359 1.5593180 0 .0892665 0 .0859309 

0.3 1.6253620 0 .1525752 0 .1599624 1.5887610 0.1260910 0.1757466 1.5374660 0 .0891444 0 .1975839 

0.5 1.6140230 0 .1522842 0 .2162008 1.5764960 0.1258770 0.2375431 1.5239520 0 .0890614 0 .2670726 
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Figures 1–4 are drawn to explore the behavior of 

Casson fluid parameter  𝛽, Hartman number 𝑀 , 

mixed convection parameter 𝜆 and 

concentration buoyancy parameter 𝑁 on velocity 

profile 𝑓′(𝜂). Fig. 1 reveals that the velocity 

profile 𝑓′(𝜂)  and momentum boundary layer 

thickness decrease with an increase in Casson 

parameter 𝛽 . Effect of Hartman number 𝑀 on 

the velocity profile 𝑓′(𝜂) is displayed in Fig. 2. 

With an increase in 𝑀 the velocity profile 𝑓′(𝜂) 

decreases. Also, momentum boundary layer 

thicknesses is a decreasing functions of  𝑀 . This 

is due to the reason that with an increase in 𝑀 

the Lorentz force increases which resist the flow. 

Fig. 3 is plotted to analyze the influence of mixed 

convection parameter 𝜆 on the velocity profile 

𝑓′(𝜂) in both assisting and opposing flows. It is 

observed that the velocity profile 𝑓′(𝜂) and 

momentum boundary layer thickness increase 

when 𝜆 > 0 (assisting flow) while opposite 

behavior is noted for 𝜆 < (opposing flow). It is 

examined that the momentum boundary layer 

thickness and velocity profile 𝑓′(𝜂) increase with 

an increase in 𝑁 (see Fig. 4). 

The effect of Brownian motion parameter 𝑁𝑏 on 

temperature 𝜃(𝜂) and concentration 𝜙(𝜂) are 

presented in Fig. 5 and 6. The Fig. 5 represents 

the variation of the dimensionless temperature 

with the Brownian motion parameter 𝑁𝑏. 

Increase in 𝑁𝑏 values gives the temperature 

graph increase and increase in thermal 

boundary layer thickness. As increase in 𝑁𝑏, 

due to movement of nanoparticles, results in 

increase the kinetic energy of the nanoparticle, 

thus rises the temperature for both constant 

surface temperature and prescribed surface 

temperature. It is also noticed that the 

concentration 𝜙(𝜂) and associated boundary 

layer thickness reduces with an enhancement in 

𝑁𝑏. 

Fig. 7 is designated to see the effect of Prandtl 

number 𝑃𝑟 on temperature profiles. Physically, 

the Prandtl number is inversely proportional to 

the thermal diffusivity. Hence, larger values of 𝑃𝑟 

produce weaker thermal diffusivity. This 

corresponds to a reduction in both temperature 

and the associated boundary layer thickness. 

Fig. 8 is sketched for a better understanding of 

the impact of 𝑆𝑐 on concentration profiles 𝜙(𝜂). 

Physically, Schmidt number is inversely 

proportional to the mass diffusion, therefore an 

increase in 𝑆𝑐 causes a reduction in nanoparticle 

concentration profiles, as well as in related 

boundary layer thickness. 

Fig. 9 is plotted to interpret the impact of heat 

generation parameter on temperature profile. 

This figure illustrates that the temperature field 

increases with the increase in heat generation 

parameter. This fact is physically true because 

by increasing values of 𝛽1 i.e. 𝛽1 > 0, exothermic 

reactions occurred in the system and as a 

consequence large amount of heat is evolved 

which raises the temperature of fluid distribution. 

Fig. 10 describes the influence of 𝛽1 on 𝜙(𝜂). It 

is exposed that 𝜙(𝜂) decays near the stretching 

surface however it enhances as one moves 

away from the surface. The thickness of 

concentration boundary layer also enhances by 

increasing the value of 𝛽1. 

Fig. 11 reveals the changes that are noticed in 

nanofluid temperature profiles due to increase in 

the values of thermal radiation parameter 𝑅. It is 

worth noticing that the nanofluid temperature 

increases as thermal radiation increase due to 

the fact that the conduction impact of the 

nanofluid improves in the presence of thermal 

radiation. Hence higher values of radiation 

parameter mean higher surface heat flux and so, 

enhance the temperature within the boundary 

layer region. 

It is concluded from Fig. 12 and 13, that the 

increase in thermopheretic parameter 

𝑁𝑡 increases the nanofluid temperature. The 

increase in the temperature is viewed as a result 

of the thermophoresis force by which a 

nanoparticle pushes the other nanoparticles 

away from the heated surface which in turn 

generates thermal energy due to the collision of 

nanoparticles. On the other hand, the effect of 

thermopheretic force on nanoparticle
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concentration is only significant in a region 

away from the surface where it increases with 

the increase in thermopheretic force. It is 

clearly observed that the nanofluid 

temperature increases with the increase in 

convective heating of the surface. Also there 

is an increase in the nanoparticle 

concentration with the increase in convective 

heating of the surface. 

Fig. 15 is plotted to explore the impact of 𝛾1on 

𝜃(𝜂). Physically, the Biot number is the ratio of 

internal thermal resistance at the surface of 

the body to the boundary layer thermal 

resistance. Therefore, enhancing the values of 

𝛾1 shows an increase in temperature profiles 

and its related boundary layer thickness. We 

see in Fig. 16 it was observed that as the 

convective heating of the sheet is enhanced 

i.e. 𝛾1  increases, the thermal penetration 

depth increases. Because the concentration 

distribution is driven by the temperature field, 

one anticipates that a higher Biot number 𝛾1  

would promote a deeper penetration of the 

concentration. 

Fig. 17 shows the effect of chemical reaction 

parameter 𝛾 on concentration profile. 

Chemical reaction parameter reduces the 

concentration profile. This is true because as 

chemical reaction takes place, the amount of 

nanoparticles within the fluid is getting smaller 

and smaller. According to the definition of 

Eckert number 𝐸𝑐, a positive 𝐸𝑐 corresponds 

to fluid heating (heat is being supplied across 

the wall into the fluid) case (𝑇𝑤 − 𝑇∞) so that 

the fluid is being heated whereas a negative 

𝐸𝑐 means that the fluid is being cooled. From 

Fig. 18 it is seen that the dimensionless 

temperature increases when the fluid is being 

heated(𝐸𝑐 > 0). It is noticed from Fig.18 that 

concentration profiles first decrease near the 

sheet surface where 0 ≤ 𝜂 ≤ 2 and situation is 

completely reversed in the other part of the 

boundary layer flow where 𝜂 ≥ 2. 

 
Fig. 1. Variation of 𝛽 on 𝑓(𝜂). 

 
Fig. 2. Variation of 𝑀 on 𝑓(𝜂). 

 
Fig. 3. Variation of 𝜆 on 𝑓(𝜂). 

 
Fig. 4. Variation of 𝑁 on 𝑓(𝜂) 

 
Fig. 5. Variation of 𝑁𝑏 on 𝜃(𝜂). 

 
Fig. 6. Variation of 𝑁𝑏 on 𝜙(𝜂). 

η

𝐌 = 𝐍𝐛 = 𝐍𝐭 = 𝐄𝐜 = 𝛃𝟏 = 𝛄 = 𝛄𝟏 = 𝛄𝟐 = 𝟎. 𝟐, 𝛌
= 𝐍 = 𝟎. 𝟓, 𝐑 = 𝟎. 𝟑, 𝐏𝐫 = 𝐒𝐜 = 𝟎. 𝟕⬚⬚

𝐍𝐛 = 𝐍 𝐭= 𝐄𝐜 = 𝛽1= 𝛄 = 𝛾1 = 𝛾2 = 𝟎.𝟐, 𝛌=𝐍
= β= 𝟎.𝟓,𝐑=𝟎.𝟑,𝐏𝐫=𝐒𝐜=𝟎.𝟕

𝐌=𝐍𝐛=𝐍𝐭=𝐄𝐜=β1=𝛄=γ1=γ2=𝟎.𝟐,
𝐍=β=𝟎.𝟓,𝐑=𝟎.𝟑,𝐏𝐫=𝐒𝐜=𝟎.𝟕

𝐍 = 𝟎.𝟎, 𝟏. 𝟓, 𝟑. 𝟎. 𝟒. 𝟓

𝑴 = 𝑵𝒃 = 𝑵𝒕 = 𝜷𝟏 = 𝜸 = 𝜸𝟏=𝜸𝟐 = 𝟎. 𝟐, 𝑹 =
𝟎. 𝟑, 𝝀 = 𝜷 = 𝟎. 𝟓, 𝑷𝒓 = 𝑺𝒄 = 𝟎. 𝟕

𝐍𝐛 = 𝟎. 𝟐, 𝟏. 𝟎, 𝟐. 𝟎, 𝟑. 𝟎

𝑴 = 𝑵𝒕 = 𝜷𝟏 = 𝜸 = 𝜸𝟏 = 𝜸𝟐 = 𝑬𝒄 = 𝟎. 𝟐,𝑹 =
𝟎. 𝟑, 𝝀 = 𝑵 = 𝜷 = 𝟎. 𝟓, Pr= Sc = 0.7

0

0.1

0.2

0.3

0 2 4 6 8

𝐍𝐛 = 𝟎. 𝟐, 𝟎. 𝟒, 𝟎. 𝟔, 𝟎. 𝟖

𝑴=𝑵𝒕=𝜷_𝟏=𝜸=𝜸_𝟏=𝜸_𝟐=𝑬𝒄=𝟎.𝟐,
𝑹=𝟎.𝟑,𝝀=𝑵=𝜷=𝟎.𝟓, Pr= Sc = 0.7

𝛃 = 𝟎. 𝟓, 𝟎. 𝟕, 𝟎. 𝟗, 𝟏. 𝟐 

𝐌 = 𝟎. 𝟎, 𝟎. 𝟐, 𝟎. 𝟒, 𝟎. 𝟔 

𝛌 = −𝟎.𝟓, 𝟎. 𝟎, 𝟎. 𝟓, 𝟏. 𝟎 



K.Govardhan al., IJNR, 2019; 2:9

IJNR: http://escipub.com/international-journal-of-nanoparticle-research/         0011

 
Fig. 7. Variation of 𝑃𝑟 on 𝜃(𝜂). 

 
Fig. 8.Variation of 𝑆𝑐 on 𝜙(𝜂). 

 
Fig. 9. Variation of 𝛽1 on 𝜃(𝜂). 

 
Fig. 10. Variation of 𝛽1 on 𝜙(𝜂). 

 
Fig. 11. Variation of 𝑅 on 𝜃(𝜂). 

 
Fig. 12. Variation of 𝑅 on 𝜙(𝜂). 

 
Fig. 13. Variation of 𝑁𝑡 on 𝜃(𝜂). 

 
Fig. 14. Variation of 𝑁𝑡 on 𝜙(𝜂). 

 
Fig. 15.Variation of 𝛾1 on 𝜃(𝜂). 

 
Fig. 16.Variation of 𝛾1 on 𝜙(𝜂). 

 
Fig. 17. Variation of 𝛾2 on 𝜙(𝜂). 

 
Fig. 18 Variation of 𝛾 on 𝜙(𝜂). 

 
Fig. 19. Variation of 𝐸𝑐 on 𝜃(𝜂) 

 
Fig. 20. Variation of 𝐸𝑐 on 𝜙(𝜂)
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5. CONCLUSION 

In the present work effect of MHD Mixed 

convection Flow of Casson Nanofluid past a 

stretching sheet in the presence of viscous 

dissipation, first order chemical reaction and 

heat source/sink is investigated. We come to the 

following conclusions, 

a) The velocity profile 𝑓′(𝜂) and thickness of 

velocity boundary layer decreases with an 

increase in casson parameter 𝛽 and 

magnetic field parameter 𝑀.  

b) The temperature boundary layer thickness 

increases due to increase of Radiation 

parameter whereas concentration boundary 

layer thickness decreases due to increase of 

Radiation parameter. 

c) The temperature boundary layer thickness 

increases due to increase of Eckert number 

where as concentration boundary layer 

thickness decreases due to increase of 

Eckert number. Also the surface heat 

transfer rate is increased. 

d) The temperature boundary layer thickness 

increases due to increase of Brownian 

motion parameter. Also the heat transfer 

rate at the sheet increases for increasing 

value of Brownian motion parameter and 

Thermophoresis parameter. The 

concentration boundary layer thickness 

increases due to increase of 

Thermophoresis parameter and 

concentration boundary layer thickness 

decreases due to increase of Brownian 

motion parameter. Also the mass transfer 

rate at the sheet decreases due to decrease 

of Brownian motion parameter. 

e) Heat source increases the temperature 

while as reverse occurred with a heat sink. 

f) The dimensionless temperature and 

nanoparticle concentration profiles increase 

with increase in 𝛾1 and 𝛾2 respectively. 
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NOMENCLATURE 
𝑐 constant associated with linear stretch 

𝐵0 applied magnetic field 

𝐵𝑖 Biot number 

𝐶 nanoparticle volume fraction 

𝐶𝑓 skin-friction coefficient 

𝐶𝑝 specific heat at constant pressure 

𝐶𝑤 wall nanoparticle volume fraction 

𝐶∞ ambient nanoparticle volume fraction 

𝐷𝐵 Brownian diffusion coefficient 

𝐷𝑇 thermophoretic diffusion coefficient 

𝐸c Eckert number 

𝑓 dimensionless stream function 

g gravitational acceleration 

ℎ heat transfer coefficient 

𝑘 thermal conductivity of the base fluid 

𝐿𝑒 Lewis number 

𝑀 Hartman number 

𝑁 concentration buoyancy 

𝑁𝑏 Brownian motion parameter 

𝑁𝑐 thermophoresis parameter 

𝑁𝑢𝑥 local Nusselt number 

𝑃𝑟 Prandtl number 

𝑞𝑚 wall mass flux 

𝑄 heat generation/absorption 

𝑞𝑤 wall heat flux 

𝑅 Radiation parameter 

𝑆ℎ𝑥 local Sherwood number 

𝑇 nanofluid temperature 

𝑇𝑓 characteristic temperature 
  

𝑇∞ ambient temperature of nanofluid 

𝑢 velocity component along 𝑥 direction 

𝑢𝑤 stretching velocity of the sheet 

𝑣 velocity component along 𝑦 direction 

𝑥 coordinate along the sheet 

𝑦 coordinate normal to the sheet 

𝛼 thermal diffusivity of base fluid 

𝛽 casson fluid parameter 

𝛽𝑐 concentration expansion coefficient 

𝛽𝑇 thermal expansion coefficient 

𝜂 similarity variable 

𝜇 viscosity of the base fluid 

𝜈 kinematic viscosity of the base fluid 

𝜆 Mixed convection parameter 

𝜙 dimensionless nanoparticle volume fraction 

𝜓 stream function 

𝜌 density of the base fluid 

𝜎 thermal diffusivity 

𝜎∗ electrical conductivity of the base fluid 

𝜎𝑠 Stefan-Boltzmann constant 

𝜃 dimensionless temperature 

𝜏 ratio of specific heat capacities 

𝜏∞ surface shear stress 

𝛾1 Heat transfer Biot number 

𝛾2 Mass transfer Biot number 

𝛽1 heat source/sink parameter 

𝛾 Chemical reaction parameter 
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